Studi Penyerapan Ion Pb²⁺ oleh Zeolit 4A yang Disintesis dari Abu Terbang

Adzanal Maghribhi¹, Bahrizal², Yerimadesi³

Jurusan Kimia, Universitas Negeri Padang Jln. Prof. Dr. Hamka Air Tawar Padang - Sumatera Barat - Indonesia

¹adzanal maghribhi@yahoo.co.id, ²bahrizal kimiaunp@yahoo.com, ³yerimadesi 74@yahoo.com

Abstract — Research of study adsorption of ion Pb²⁺ by zeolite 4A has been done. This study aims to determine maximum of pH and concentration of Pb²⁺ for adsorption by zeolite 4A. This study uses variation pH of 4,8; 5,0; 5,2; 5,4 and 5.6; and variation concentrations of 40, 45, 50, 55, 60 and 65 ppm. Concentration of the adsorbed Pb²⁺ was calculated from the difference between the initial Pb²⁺ before the adsorption with the residual concentration of Pb²⁺ (measured). Measurement of residual concentration of Pb²⁺ using Atomic Absorption Spectroscopy (AAS). The result showed the maximum pH is 5,4 by the adsorption capacity is 14.7511 mg/g zeolite, and maximum initial concentration of Pb²⁺ by the adsorption capacity is 15.6438 mg/g zeolite.

Keywords — AAB, adsorption, Pb, zeolite

I. PENDAHULUAN

Salah satu pemanfaatan abu terbang adalah untuk sintesis zeolit 4A [Na₁₂(SiO₂)₁₂(AlO₂)₁₂.27H₂O]. Zeolit 4A banyak disintesis karena zeolit 4A mempunyai banyak kegunaan, diantaranya: sebagai bahan pengisi deterjen pengganti tripolipospat, penukar ion dalam limbah cair yang mengandung ion-ion logam berbahaya^[7], katalis, dan penyerap molekul gas kecil seperti H₂S, CO₂, dan gas lainnya^[3]. Aini telah mensintesis zeolit 4A dari abu terbang PLTU Sijantang. Dari penelitian tersebut diperoleh hasil bahwa zeolit yang disintesis belum murni, ditandai dengan warna zeolit yang dihasilkan masih berwarna abu-abu, tingkat kristalinitas zeolit 4A rendah, dan masih rendahnya rasio pita serapan infra-merah pada bilangan gelombang 530/430 cm⁻¹, yaitu 54%. Hal ini diduga disebabkan oleh zeolit 4A yang dihasilkan masih mengandung oksida logam pengotor seperti CaO, MgO, dan $Fe_2O_3^{[1]}$.

Keberadaan oksida CaO, MgO, dan Fe_2O_3 dalam abu terbang sebelum digunakan untuk mensintesis zeolit 4A dapat dihilangkan dengan melarutkan abu terbang dalam asam anorganik seperti HCl, HNO $_3$, dan campuran HNO $_3$ dengan H_2SO_4 . Campuran HNO $_3$ dengan H_2SO_4 dapat melarutkan sebagian MgO, Fe_2O_3 , tetapi tidak melarutkan SiO_2 dan Al_2O_3 . Apabila dalam zeolit 4A yang dihasilkan terdapat ion Ca^{2+} , maka diperkirakan kapasitas serapan ion dari zeolit akan berkurang, karena sebelum rongga zeolit 4A sempat diisi oleh ion-ion logam lainnya seperti Pb^{2+} , Cu^{2+} , dan lain-lain, ion Ca^{2+} akan lebih dahulu menempati rongga zeolit.

Aini dan Bahrizal^[2] melaporkan bahwa; a) penggunaan pelarut HNO₃ pada abu terbang mampu melarutkan oksida besi sebanyak 77%, serta menghasilkan SiO₂ 62,98%. Hal ini disebabkan oleh besi, kalsium, dan magnesium berada dalam keadaan mineral sukar larut, serta HNO₃ tidak mampu melarutkan semua senyawa organik atau grafit yang terdapat dalam abu terbang, b) kualitas zeolit 4A dari abu terbang

sesudah dilarutkan dengan HNO₃ lebih baik daripada zeolit 4A dari abu terbang tanpa dilarutkan dengan HNO₃. Tingkat kristalinitas zeolit 4A meningkat dari 54% menjadi 78% yang dilihat pada rasio pita serapan infra-merah pada bilangan gelombang 530/430 cm⁻¹. Dengan tingginya tingkat kristalinitas dan sedikitnya jumlah ion Ca²⁺ dalam zeolit 4A, maka secara teoritis kapasitas serapan ion zeolit akan tinggi.

ISSN: xxxx-xxxx

Penelitian tentang kapasitas penukar ion Pb²⁺ murni oleh zeolit 4A yang telah disintesis dari abu terbang telah dilakukan oleh Dona. Dona menggunakan zeolit 4A yang disintesis dari abu terbang yang telah didekomposisi dengan HNO₃ dengan tingkat kristalinitas 78%. Dari hasil penelitian tersebut didapatkan kapasitas penukar ion Pb²⁺ oleh zeolit 4A hasil sintesis sebesar 13,99 mg/g zeolit^[4]. Kristianto juga telah melakukan penelitian tentang zeolit 4A sebagai penukar ion Pb²⁺ pada air limbah Laboratorium Kimia FMIPA UNP dengan menggunakan zeolit 4A yang telah disintesis sebelumnya oleh Hadi Saputra. Dari hasil penelitian tersebut didapatkan temperatur optimum sebesar 90°C dengan kapasitas pertukaran ion sebesar 0,048223 mg Pb²⁺/g zeolit dan waktu kontak optimum 5 menit^[6]. Sementara itu, Hilma telah mensintesis zeolit 4A dari abu terbang PLTU Sijantang yang telah didekomposisi dengan aquaregia. Abu terbang terlebih dahulu disintesis menjadi natrium silikat, kemudian baru pembentukan zeolit 4A dari larutan aluminat dan larutan natrium silikat hasil pelarutan. Dari hasil penelitian tersebut didapat temperatur optimum sintesis natrium silikat yang menghasilkan % berat SiO₂ terbesar yang menjadi bahan dasar dalam pembuatan zeolit 4A yaitu 150°C selama 1 jam dan rasio mol SiO2: NaOH = 1:3, serta tingkat kristalinitas zeolit 4A hasil sintesis sebesar 83,08^[5].

II. METODE PENELITIAN

A. Alat dan Bahan

Alat: peralatan gelas, *hotplate magnetic stirrer*, cawan penguap, pH meter, neraca analitis, termometer, 1 set sentrifus dan SSA.

Bahan: zeolite 4A yang telah disintesis oleh Hilma dari abu terbang dari PLTU Sijantang Sawah Lunto yang sebelumnya telah didekomposisi dengan aquaregia, Al_(s), HNO₃ pekat_(l), Pb(NO₃)₂, NaClO₄ 0,01 M, asam asetat 0,2 M, dan natrium asetat 0,2 M, kertas saring, dan aquades.

B. Cara Kerja

1) Pembuatan larutan

a) Standar Pb²⁺ 1000 ppm

Larutan induk Pb^{2+} 1000 ppm dibuat dengan melarutkan 1,5986 gram $Pb(NO_3)_2$ dengan asam nitrat 1% sampai volume 1000 mL. Kemudian dibuat larutan standar 40, 45, 50, 55, 60 dan 65 ppm dari larutan induk Pb^{2+} 1000 ppm dengan volume 100 mL.

b) Larutan HNO₃ 1% (v/v)

Diencerkan 15,4 mL HNO₃ 65% dalam labu ukur 1000 mL dengan aquades sampai tanda batas.

c) Larutan NaClO₄ 0,01 M

Dilarutkan 1,2250 gram $NaClO_4$ dengan aquades dalam labu ukur 1000 mL sampai tanda batas.

d) Buffer asetat

Campurkan sejumlah larutan asam asetat 0,2 M dengan larutan natrium asetat 0,2 M dan diencerkan dengan aquades sampai volume 100 mL.

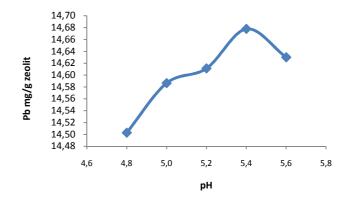
TABEL I Perbandingan Jumlah Larutan Asam Asetat 0,2 M dengan Larutan Natrium Asetat 0.2 M pada Pembuatan Buffer Asetat.

рН	Asam asetat 0,2 M (mL)	Natrium asetat 0,2 M (mL)	Aquades (mL)
4.8	23,4	26,6	50
5,0	17,9	32,1	50
5,2	13,0	37,0	50
5,4	9,1	40,9	50
5,6	6,1	43,9	50

2) Penentuan kapasitas serapan ion Pb2+ oleh zeolit 4A dengan variasi pH.

Disiapkan 100 mg zeolit 4A dalam gelas kimia, kemudian ditambahkan 24 mL larutan Pb²⁺ dalam larutan buffer asetat dengan konsentrasi 50 ppm, ditambahkan beberapa tetes larutan NaClO₄ 0,01 M sampai pH 4,8 lalu dipanaskan pada temperatur 90°C. Campuran dibiarkan berinteraksi sambil diaduk dengan *hotplate magnetic stirrer* selama 5 menit. Selanjutnya campuran disentrifus untuk memisahkan filtrat dan endapan. Campuran kemudian disaring dan filtrat diukur dengan SSA. Konsentrasi Pb²⁺ yang terserap dihitung dari pengurangan konsentrasi awal dengan konsentrasi sisa (hasil pengukuran). Pekerjaan dilakukan dengan variasi pH 5,0; 5,2; 5,4 dan 5,6

3) Penentuan kapasitas serapan ion Pb2+ oleh zeolit 4A dengan variasi konsentrasi awal Pb²⁺.


ISSN: xxxx-xxxx

Disiapkan 100 mg zeolit 4A dalam gelas kimia, kemudian ditambahkan 24 mL larutan Pb²⁺ dalam larutan buffer asetat dengan konsentrasi 40 ppm, ditambahkan beberapa tetes larutan NaClO₄ 0,01 M sampai pH 5,4 lalu dipanaskan pada temperatur 90°C. Campuran dibiarkan berinteraksi sambil diaduk dengan *hotplate magnetic stirrer* selama 5 menit. Selanjutnya campuran disentrifus untuk memisahkan filtrat dan endapan. Campuran kemudian disaring dan filtrat diukur dengan SSA. Konsentrasi Pb²⁺ yang terserap dihitung dari pengurangan konsentrasi awal dengan konsentrasi sisa (hasil pengukuran). Pekerjaan dilakukan dengan variasi pH 5,0; 5,2; 5,4 dan 5.

III. HASIL DAN PEMBAHASAN

A. Kapasitas Serapan Ion Pb²⁺ oleh Zeolit 4A dengan variasi pH

Pada penelitian ini menggunakan variasi pH 4,8; 5,0; 5,2; 5,4 dan 5,6. Grafik hubungan pH dengan serapan ion Pb²⁺ yang diperoleh dapat dilihat pada Gambar 1.

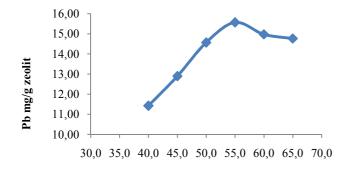
Gambar 1. Grafik Kapasitas Penyerapan Ion Pb^{2+} oleh Zeolit 4A dengan Variasi Konsentrasi Awal Pb^{2+}

Gambar 1 memperlihatkan adanya satu puncak yaitu pada pH 5,4 dengan kapasitas serapan ion Pb²⁺ sebesar 14,6777 mg/g zeolit. Hal ini berarti bahwa pH 5,4 merupakan pH optimum karena terjadi penyerapan maksimum ion Pb²⁺ oleh zeolit 4A, data selengkapnya dapat dilihat pada Tabel 1.

Menurut Singer^[8], pernyerapan ion terjadi pada pH sekitar 5. Pada pH dibawah 5,4, jumlah ion H⁺ yang dilepaskan selama hidrolisis logam dalam larutan banyak sehingga diduga terjadi kompetensi antara ion H⁺ dengan Pb²⁺ untuk menempati rongga zeolit 4A, sehingga penyerapan ion Pb²⁺ pada pH tersebut rendah.

TABEL II Kapasitas Serapan Ion Pb²⁺ oleh Zeolit 4A dengan Variasi pH

No	рН	Zeolit 4A	[Pb ²⁺] (ppm)			[Pb ²⁺] _{ads}
		(gram)	Awal	Akhir	Tertukar	mg/g
1	4,8	0,1005	49,8537	1,2689	48,5848	14,5029
2	5,0	0,1009	49,8537	0,7948	49,0589	14,5864
3	5,2	0,1009	49,8537	0,7112	49,1425	14,6112
4	5,4	0,1005	49,8537	0,6833	49,1704	14,6777
5	5,6	0,1004	49,8537	0,7948	49,0589	14,6590


Kenaikan pH akan mengurangi jumlah H⁺ sehingga meningkatkan penyerapan ion. Pada pH diatas 5,4 kapasiats serapan ion Pb²⁺ mengalami penurunan. Hai ini disebabkan oleh terjadinya kesetimbangan ion OH⁻ dengan H⁺ dalam larutan. Adanya ion OH⁻ dapat menyebabkan terbentuknya PbOH⁺ yang kemudian akan membentuk garam hidroksi logam dengan zeolit 4A melalui mekanisme reaksi:

$$Pb^{2+} + H_2O \rightarrow PbOH^+ + H^+$$

 $PbOH^+ + Na-zeolit^+ \rightarrow Na-zeolit--PbOH$

Dengan terbentuknya PbOH⁺ menyebabkan laju serapan ion menjadi lambat, karena massa molekul ion logam hidroksi semakin bertambah besar dan muatannya menjadi lebih kecil dibanding ion logam Pb²⁺, sehingga pelepasan ion Na⁺ pada zeolit 4A menjadi semakin lambat.

B. Kapasitas Serapan Ion Pb²⁺ oleh Zeolit 4A dengan Variasi Konsentrasi Awal Pb²⁺

Pada penelitian ini menggunakan konsentrasi Pb²⁺ 40, 45, 50, 55, 60 dan 65 ppm. Grafik hubungan konsentrasi awal Pb²⁺ dengan serapan ion Pb²⁺ yang diperoleh dapat dilihat pada Gambar 2.

Gambar 2. Grafik Kapasitas Serapan Ion Pb2+ oleh Zeolit 4A dengan Variasi Konsentrasi Awal Pb $^{2+}$

Konsentrasi

Gambar 2 memperlihatkan adanya peningkatan jumlah ion Pb²⁺ yang terserap oleh zeolit 4A seiring dengan meningkatnya konsentrasi larutan awal Pb²⁺. Pada konsentrasi

awal 40 ppm, kapasitas serapan ion Pb²⁺ dengan zeolit 4A adalah sebesar 11,4218 mg/g zeolit. Kapasitas ini meningkat tajam sampai konsentrasi 55 ppm yaitu sebesar 5,5660 mg/g zeolit. Selanjutnya pada konsentrasi 60 dan 65 ppm serapan ion Pb²⁺ mengalami penurunan dengan jumlah ion Pb²⁺ yang tertukar sebesar 14,9750 mg/g zeolit dan 14,7650 mg/g zeolit. Hal ini berarti bahwa konsentrasi 55 ppm merupakan konsentrasi awal Pb²⁺ optimum karena terjadi penyerapan maksimum ion Pb²⁺ oleh zeolit 4A, data selengkapnya dapat dilihat pada Tabel 2.

ISSN: xxxx-xxxx

TABEL III.
Kapasitas Serapan Ion Pb²⁺ oleh Zeolit 4A dengan Variasi Konsentrasi Awal
Pb²⁺.

N	sen-	Zeolit 4A (gram)	[Pb ²⁺] (ppm)			[Pb ²⁺] _{ads}
0			Awal	Akhir	Tertukar	mg/g
1	40	0,1004	39,9567	1,7317	38,2250	11,4218
2	45	0,1008	46,0984	2,7824	43,3160	12,8917
3	50	0,1005	49,2574	0,4673	48,7901	14,5642
4	55	0,1005	55,6849	3,5389	52,1460	15,5660
5	60	0,1004	59,3748	9,2585	50,1163	14,9750
6	65	0,1007	64,1354	14,5741	49,5613	14,7650

Hal ini sesuai dengan persamaan isoterm Langmuir bahwa penyerapan suatu zat oleh penukar ion bertambah dengan meningkatnya konsentrasi, dan pada konsentrasi tertentu penyerapan akan konstan. Dengan kata lain penambahan konsentrasi tidak menyebabkan bertambahnya penyerapan, dimana permukaan penukar/rongga zeolit 4A telah mengalami penjenuhan.

Pada permukaan zeolit 4A mempunyai sejumlah rongga yang sebanding dengan luas permukaan ion. Jika keadaan rongganya belum jenuh dengan ion Pb²⁺, maka peningkatan konsentrasi awal ion Pb²⁺ yang dikontakkan akan meningkatkan jumlah ion Pb²⁺ yang terserap oleh zeolit 4A. Selanjutnya jika rongga zeolit 4A telah jenuh dengan ion Pb²⁺, maka peningkatan konsentrasi awal larutan yang dikontakkan relatif tidak meningkatkan jumlah serapan ion. Pada konsentrasi yang lebih tinggi, ion Pb²⁺ tidak dapat masuk kedalam rongga karena rongga zeolit telah jenuh dengan ion Pb²⁺ sehingga kemungkinan penyerapan ion pada konsentrasi tinggi tidak mengalami peningkatan berarti malah cenderung menurun.

Selain kejenuhan zeolit oleh ion Pb²⁺, hal lain yang dapat mempengaruhi kapasitas serapan ion yaitu cacat kristal yang terdapat pada kristal zeolit 4A. Cacat kristal yang mungkin seperti rongga yang tertutup sehingga tidak dapat mengadsorpsi ion Pb²⁺. Pada zeolit 4A hasil sintesis, ada kemungkinan kristal zeolit yang terbentuk tidak sempurna karena terdapatnya kwarsa pada padatan kristal sintesis.

IV. KESIMPULAN

Berdasarkan penelitian yang dilakukan, dapat disimpulkan bahwa :

- Kapasitas serapan ion Pb²⁺ maksimum oleh zeolit 4A hasil sintesis dari abu terbang terjadi pada pH 5,4 dengan kapasitas serapan ion sebesar 14,6777 mg Pb²⁺/g zeolit.
- 2) Kapasitas serapan ion Pb²⁺ maksimum oleh zeolit 4A hasil sintesis dari abu terbang terjadi pada konsentrasi awal 55 ppm dengan kapasitas serapan ion sebesar 15,5660 mg Pb²⁺/g zeolit.Analisis dengan menggunakan HPLC dilakukan pada panjang gelombang 270 nm, laju alir 1 ml/menit, fasa diam kolom ODS C18. fasa gerak metanol:buffer asetat (30:70), pH optimum adalah pH 5,0. Waktu retensi sakarin adalah 4,35 menit dan kafein 8,42 menit.

REFERENSI

- [1] Aini, S, dan Bahrizal. 2008. Pengaruh Pelarut HNO₃ pada Komposisi Kimia Abu Terbang dan Kualitas Zeolit 4A yang Dihasilkan. Penelitian Dana Rutin UNP Padang. UNP.
- [2] Aini, S. 2002. Pemanfaatan Abu Layang PLTU Sijantang untuk Pembuatan Zeolit 4A. Penelitian Dana Rutin UNP Padang. UNP.
- [3] Breck, D.W. 1983. Synthetic Zeolits: Properties and Aplications.

 Journal of the American Institute of Mining Metalurgical and
 Petrolium Engienner Inc.
- [4] Dona, W. 2003. "Studi Penukar Ion Pb²⁺ oleh Zeolit 4A yang Disintesa dari Abu Terbang yang telah Didekomposis", Skripsi, Universitas
- [5] Hilma. 2010. "Sintesis Natrium Silikat dan Zeolit 4A dari Abu Terbang". Skripsi. Universitas Negeri Padang, Padang, Indonesia, 2010
- [6] Kristianto. 2005. "Zeolit 4A sebagai Penukar Ion Pb²⁺ pada Air Limbah Laboratorium Kimia FMIPA Universitas Negeri Padang". Skripsi. Universitas Negeri Padang, Padang, Indonesia, 2003.
- [7] Shih, W.H, dan Chang, H.L. 1996. Conversion of Fly Ash Into Zeolites for Ion-Exchange Applications. *Material Letters*, Vol. 28. Hlm. 263-268
- [8] Singer, A, dan Berkgaut, V. 1995. Cation Exchange Properties of Hydrothermally Treated Coal Fly Ash. *Environmental Science and Technology*, Vol. 29. Hlm. 1748-1753.

ISSN: xxxx-xxxx